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Dynamical correlations of various local operators are studied in the spin-half two-channel Kondo (2CK)
model in the presence of channel anisotropy or external magnetic field. A conformal field theory—based scaling
approach is used to predict the analytic properties of various spectral functions in the vicinity of the two-
channel Kondo fixed point. These analytical results compare well with highly accurate density-matrix numeri-
cal renormalization-group results. The universal crossover functions interpolating between channel-anisotropy-
or magnetic-field-induced Fermi-liquid regimes and the two-channel Kondo, non-Fermi-liquid regimes are
determined numerically. The boundaries of the real 2CK scaling regime are found to be rather restricted and to
depend both on the type of the perturbation and on the specific operator whose correlation function is studied.
In a small magnetic field, a universal resonance is observed in the local fermion’s spectral function. The
dominant superconducting instability appears in the composite superconducting channel.
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I. INTRODUCTION

Deviations from Fermi-liquid-like (FL-like) behavior ob-
served, e.g., in the metallic state of high-temperature cuprate
superconductors'? or in heavy-fermion systems** prompted
physicists to look for new non-Fermi-liquid (NFL) com-
pounds. So far a large number of such exotic compounds
have been found and investigated.’ In these systems elec-
trons remain incoherent down to very low temperatures and
the usual Fermi-liquid description breaks down. To our cur-
rent understanding, NFL physics may arise in many different
ways: it can occur due to some local dynamical quantum
fluctuations often described by quantum impurity models.5~
It can also be attributed to the presence of the quantum fluc-
tuations of an order parameter or some collective modes, as
is the case in the vicinity of many quantum phase
transitions,®!? or for the prototypical example of a Luttinger
liquid,''-1® where electrons are totally disintegrated into col-
lective excitations of the electron gas. NFL physics can also
appear as a consequence of disorder such as, e.g., in disor-
dered Kondo alloys!” and possibly in  doped
semiconductors. 819

In this paper we study a variant of the overscreened mul-
tichannel Kondo model: the spin-half two-channel Kondo
(2CK) model, which is the simplest prototypical example of
non-Fermi-liquid quantum impurity models. This model was
first introduced by Nozieres and Blandin.?’ Since then it has
been proposed to describe a variety of systems including
dilute heavy-fermion compounds,’ tunneling impurities in
disordered metals, and doped semiconductors.>'=23> More re-
cently, the 2CK state has been observed in a very controlled
way in a double-dot system originally proposed by Oreg and
Goldhaber-Gordon.>*-26

The two-channel Kondo model consists of a spin-half lo-
cal moment which is coupled through antiferromagnetic ex-
change interactions to two channels of conduction electrons.
Electrons in both channels try to screen the impurity spin. If
the coupling of the spin to one of the channels is stronger
than to the other, then electrons in the more strongly coupled
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channel screen the spin, while the other channel becomes
decoupled. However, for equal exchange couplings, the com-
petition between the two channels leads to overscreening and
results in a non-Fermi-liquid behavior. Among others, it is
characterized by a nontrivial zero-temperature residual en-
tropy, a square-root-like temperature dependence of the dif-
ferential conductance, a logarithmic divergence of the spin
susceptibility, and the linear specific-heat coefficient at low
temperatures.’ This unusual and fragile ground state cannot
be described within the framework of the Fermi-liquid
theory of Nozieres.”’

Being a prototypical example of non-Fermi-liquid mod-
els, the two-channel Kondo model (2CKM) has already been
investigated with a number of methods. These include non-
perturbative techniques such as the Bethe ansatz, which
gives full account of the thermodynamic properties;?®%
boundary conformal field theory,® which describes the vicin-
ity of the fixed points; and numerical renormalization-group
(NRG) methods.?'-3* Furthermore, other less powerful ap-
proximate methods such as the Yuval-Anderson approach,*
Abelian bosonization,? large-f expansion,*3” and noncross-
ing approximation®® have also been used to study the 2CKM
successfully.

Rather surprisingly, despite this extensive work, very little
is known about dynamical correlation functions such as the
spin susceptibility, local charge, and superconducting suscep-
tibilities. Even the detailed properties of the 7" matrix, essen-
tial to understanding elastic and inelastic scatterings in this
non-Fermi-liquid case®® have only been computed earlier us-
ing conformal field theory (which is rather limited in energy
range) and by the noncrossing approximation (which is not
well controlled and is unable to describe the Fermi-liquid
crossover).*>#! It was also possible to compute some of the
dynamical correlation functions in the case of extreme spin
anisotropy using Abelian bosonization results,* though these
calculations reproduce only partly the generic features of the
spin-isotropic model.*> Local correlations in the two-channel
Anderson model around the non-Fermi-liquid fixed point
have already been investigated to a certain extent with the
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use of NRG, but in the absence of channel anisotropy and
magnetic field.**** However, a thorough and careful NRG
analysis of the 7=0 temperature 7" matrix of the 2CKM has
been carried out only very recently,** and the T+ 0 analy-
sis still needs to be done.

The main purpose of this paper is to fill this gap by giving
a comprehensive analysis of the local correlation functions at
zero temperature using the numerical renormalization-group
approach. However, in the vicinity of the rather delicate two-
channel Kondo fixed point, the conventional NRG method
fails and its further developed version, the density-matrix
numerical normalization-group (DM-NRG) method,*® needs
to be applied. Furthermore, a rather large number of multi-
plets must be kept to achieve good accuracy. We have there-
fore implemented a modified version of the recently devel-
oped spectral-sum-conserving DM-NRG method, where we
use non-Abelian symmetries in a flexible way to compute the
real and the imaginary parts of various local correlation
functions.*’

To identify the relevant perturbations around the NFL
fixed point, we apply the machinery of boundary conformal
field theory. Then we systematically study how the vicinity
of fixed points and the introduction of relevant perturbations
such as a finite channel anisotropy or a finite magnetic field
influence the form of the dynamical response functions at
zero temperature. We mainly focus on the strong-coupling
regime of the 2CK model and the universal crossover func-
tions in the proximity of this region induced by an external
magnetic field or channel anisotropy. We remark that these
crossover functions, describing the crossover from the non-
Fermi-liquid fixed point to a Fermi-liquid fixed point, as well
as the response functions can currently be computed reliably
at all energy scales only with NRG. However, we shall be
able to use the results of boundary conformal field theory, or
more precisely the knowledge of the operator content of the
two-channel Kondo fixed point and the scaling dimensions
of the various perturbations around it, to make very general
statements on the analytic properties of the various crossover
and spectral functions.

We shall devote special attention to superconducting fluc-
tuations. It has been proposed that unusual superconducting
states observed in some incoherent heavy-fermion com-
pounds could also emerge as a result of local superconduct-
ing correlations associated with two-channel Kondo
physics.”334849 Here we investigate some possible supercon-
ducting order parameters consistent with the conformal field
theoretical predictions, and find that the dominant instability
emerges in the so-called composite superconducting channel,
as proposed in Refs. 35 and 49.

The paper is organized as follows. In Sec. II starting from
the one-dimensional, continuum formulation of the 2CKM,
we connect it to a dimensionless approximation of it suited
to our DM-NRG calculations. We also provide the symmetry
generators used in the conformal field theoretical and DM-
NRG calculations. In Sec. IIl we use boundary conformal
field theory to classify the boundary highest-weight fields of
the electron-hole (e-h) symmetrical 2CKM by their quantum
numbers and identify the relevant perturbations around the
2CK fixed point. Based on this classification the fields are
then expanded in leading order in terms of the operators of
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the free theory. In Sec. IV we describe the technical details of
our DM-NRG calculations. In Secs. V=VII we study the real
and the imaginary parts of the retarded Green’s functions of
the local fermions, the impurity spin, and the local supercon-
ducting order parameters. In each of these sections we first
discuss the analytic forms of the susceptibilities in the
asymptotic regions of the two-channel and single-channel
Kondo scaling regimes, as they follow from scaling argu-
ments. Then we confirm our predictions by demonstrating
how the expected corrections due to the relevant perturba-
tions and the leading irrelevant operator present themselves
in the DM-NRG data. Furthermore we determine the bound-
aries of the 2CK scaling regimes and derive universal scaling
curves connecting the FL and NFL fixed points for each op-
erator under study. In Sec. VIII the effects of electron-hole
symmetry breaking are investigated. Finally, our conclusions
are drawn in Sec. IX.

II. HAMILTONIAN AND SYMMETRIES

The two-channel Kondo model consists of an impurity
with a magnetic moment § =% embedded into a FL of two
types of electrons (labeled by the flavor or channel indices
a=1,2), and interacting with them through a simple ex-
change interaction,

Dp
H=2, f dike], (k). (k)
a,u v -Dp

J Dp Dp >
S w [ il 00,00, 0
2 _DF _DF

a v

Here CL’ M(k) creates an electron of flavor « in the /=0 angu-
lar momentum channel with spin u and radial momentum &
measured from the Fermi momentum. In the Hamiltonian
above we allowed for a channel anisotropy of the couplings,
J, #J,, and denoted the Pauli matrices as . In the first ki-
netic term, we assumed a spherical Fermi surface and linear-
ized the spectrum of the conduction electrons, &(k) =~ v pk=k,
but these assumptions are not crucial. Apart from irrelevant
terms in the Hamiltonian, our considerations below carry
over to essentially any local density of states with electron-
hole symmetry. The fields CL, 'u(k) are normalized to satisfy
the anticommutation relation

{cl, Jk).cp (k) = 8, 58, 0k —k'). @)

Therefore the couplings J, are just the dimensionless cou-
plings, usually defined in the literature. Since we are inter-
ested in the low-energy properties of the system, an energy
cutoff Dy is introduced for the kinetic and the interaction
energies. In heavy-fermion systems, this large energy scale is
in the range of the Fermi energy, Dy~ Ef, while for quantum
dots, it is on the order of the single-particle level spacing of
the dot, Je, or its charging energy E., whichever is smaller.

The Hamiltonian above possesses various symmetries. To
see it, it is worth introducing the left-moving fermion fields,
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TABLE I. Generators of the used symmetries for the two-channel Kondo model computations. Sites along
the Wilson chain are labeled by n whereas « and u, v are the channel and spin indices, respectively.

Symmetry group

Generators

.31

SUC”‘(Z) C,=2 (_l)nf:;,a,Tsz,a,l’ Czoz=% 2 E(fz,a,fbfn,a,ﬂ_%)’ C;=CZT
n=0 n=0pu
SUK(2) J=S+53 S f} o Gudnan
n=0a,u,v
Dp i To perform NRG calculations, we use the following ap-
lﬂa,#(x) = dke™c a,ﬂ(k), (3) proximation of the dimensionless Hamiltonian:

_DF

and rewriting the Hamiltonian as

dx . Jo= o o
Hz% f = i)+ 2 25U 0)G90)

(4)
Then the total spin operators 7 defined as
F=s+ [ L, g
2m
. 1 . .
J'(x) = EE L () 0 () : (6)

commute with the Hamiltonian and satisfy the standard
SU(2) algebra,

[T, T]=ie"T". (7)
In the previous equations we suppressed spin indices and
introduced the normal ordering :---: with respect to the non-
interacting Fermi sea. In a similar way we can define the

“charge spin” (or isospin) density operators for the channels
a=1,2 as

C3l0) = Sl

C,lx) =

¢aT(x) (//aL(x)’ CZ()C) =

Wl ()Yl (),

Co (x) = Cix) = iC)(x) (8)

and the corresponding symmetry generators as

. dx .
C=| —C(x
“ f 2m o)
The generators C', which are related to the electron-hole
symmetry,”° satisfy the same SU(2) algebra as the 7',

[CL.Cl] = i8,5€"*Cl. (10)

(i=x,9,2). 9)

and they also commute with Hamiltonian (4). Thus the
Hamiltonian H has a symmetry SU¢(2) XSU(2)
X SUg(2) in the charge and spin sectors for arbitrary cou-
plings J,.

2H

mNEE Sanﬂ 0.0

a @

+E > L pfrst e + He), (11)

n=0 a,u,v

with A as a discretization parameter and J,=4J,/(1+A™").
The operator f,, creates an electron right at the impurity site
and can be expressed as

@ dkc, (12)
fO’ ’M \’ 2DFJ

Hamiltonian (11) is also called the Wilson chain: it describes
electrons hopping along a semi-infinite chain with a hopping
amplitude #,~ A2, and interacting with the impurity only
at site 0. In the NRG procedure, this Hamiltonian is diago-
nalized iteratively, and its spectrum is used to compute the
spectral functions of the various operators.?!

We remark that the Wilson Hamiltonian is not identical to
H since some terms are neglected along its derivation.®!
Nevertheless, similar to H, the Wilson Hamiltonian also pos-
sesses the symmetry SU¢;(2) X SU~(2) X SUg(2) for arbi-
trary J, and J, couplings.®® The corresponding symmetry
generators are enumerated in Table I. We can then use these
symmetries to label every multiplet in the Hilbert space and

every operator multiplet by the eigenvalues P= Jj(j+1) and
C2=c,(c,+1). Throughout this paper, we shall use these

quantum numbers to classify states and operators.
In the presence of a magnetic field, i.e., when a term’'

I_Imagn:_glu’BBSZ (13)

is added to H, the symmetry of the system breaks down to
SU¢(2) X SU(2) X Ug(1), with the symmetry Ug(1) corre-
sponding to the conservation of the z component of the spin,
J* (see Table I). In the rest of the paper we shall use units
where we set guz=1.

III. NON-FERMI-LIQUID FIXED POINT AND ITS
OPERATOR CONTENT

For J;=J,=J and in the absence of an external magnetic
field, the Hamiltonian H possesses a dynamically generated
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FIG. 1.

(Color online) Spectral function @y of the composite
fermion operator F ; ; as a function of w, and the definitions of the
scales Tx and T*. Tx is defined by the relation Qp(w=Tg,T
=0,Kz=0)= zgp(w 0,7=0,Kx=0). For nonzero KR the scale T*
is defined through 0x(w=T",T=0, KR)=ZQF

energy scale, the so-called Kondo temperature,
TK ~D )24 _I/J.

The definition of Ty is somewhat arbitrary. In this paper, T
shall be defined as the energy w at which for J;=J, the
spectral function of the composite fermion drops to half of
its value assumed at w=0 (for further details see the end of
this section and Fig. 1). For B=0 and J,=J,, below this
energy scale the physics is governed by the so-called two-
channel Kondo fixed point.

The physics of the two-channel Kondo fixed point and its
vicinity can be captured using conformal field theory. The
two-channel Kondo finite-size spectrum and its operator con-
tent was first obtained using boundary conformal field theory
by Affleck and co-workers.’® However, instead of charge
SU(2) symmetries, Affleck and co-workers used flavor SU(2)
and charge U(1) symmetries to obtain the fixed-point
spectrum.’® The use of charge SU(2) symmetries, however,
has a clear advantage over the flavor symmetry when it
comes to performing NRG calculations: while the channel
anisotropy violates the flavor symmetry, it does not violate
the charge SU(2) symmetries. Therefore, even in the channel
anisotropic case, we have three commuting SU(2) symme-
tries. If we switch on a local magnetic field, only the spin
SU(2) symmetry is reduced to its U(l) subgroup. Using
charge symmetries allows thus for much more precise calcu-
lations. In fact, using them is absolutely necessary to obtain
satisfactorily accurate spectral functions, especially in the
presence of a magnetic field.

To understand the fixed-point spectrum and the operator
content of the 2CKM, let us outline the boundary conformal
field theory in this SU¢(2) X SU~(2) X SUg(2) language.
First, we remark that the spin-density operators Ji(x) satisfy
the SU(2),-, Kac-Moody algebra of level k=2,

PHYSICAL REVIEW B 78, 165130 (2008)

[Ji(x),(x")] = géijﬁ'(x —x") +2mw8(x — x") XK (x),
(14)

while the charge-density operators C'(x) defined in Sec. II
satisfy the Kac-Moody algebra of level k=1:

[CL(0, C’ )]——5" wpd (x—x')

+i278,50(x — x )é’ka(x)

We can use these current densities and the coset construction
to write the kinetic part of the Hamiltonian as

H():HCI +ch+Hs+H1,

Heum | SCU0EL0:
1 dx - -
Hs=7 f i:](x)](x):. (15)

In H,, the first two terms describe the charge sectors and
have central charge c=1, while Hg describes the spin sector
and has central charge ¢=3/2. The last term corresponds to
the coset space and must have central charge c=1/2 since
the free-fermion model has central charge c=4, correspond-
ing to the four combinations of spin and channel quantum
numbers. This term can thus be identified as the Ising model,
having primary fields 1, o, and € with scaling dimensions 0,
1/16, and 1/2, respectively. We can then carry out the con-
formal embedding in the usual way, by comparing the finite-
size spectrum of the free Hamiltonian with that of Eq. (15),
and identifying the allowed primary fields in the product
space. The fusion rules obtained this way are listed on the
upper part of Table II. The finite-size spectrum at the two-
channel Kondo fixed point can be derived by fusing with the
impurity spin (which couples to the spin sector only), follow-
ing the operator product expansion of the Wess-Zumino-
Novikov-Witten model, 1/2®0—1/2, 1/2®1/2—0&1,
and 1/2®1—1/2 (see lower part of Table II). Finally, the
operator content of the fixed point can be found by perform-
ing a second fusion with the spin. The results of this double
fusion are presented in Table IIl. In Table III the leading

irrelevant operator, j ,d)é, is also included. Although it is not
a primary field,* close to the 2CK fixed point, this operator
will also have impact on the form of the correlation func-
tions.

What remains is to identify the scaling operators in terms
of the operators of the noninteracting theory. In general, an
operator of the noninteracting theory can be written as an
infinite series in terms of the scaling operators and their de-
scendants. Apart from the Ising sector, which is hard to iden-
tify, we can tell by looking at the various quantum numbers
of an operator acting on the Wilson chain which primary
fields could be present in 1t In this way, we can identify, e.g.,

dzY as the spin operator S. Thus the spin operator can be
expressed as
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TABLE II. Upper part: Primary fields and the corresponding
finite-size energies at the free-fermion fixed point for antiperiodic
boundary conditions. States are classified according to the group
SU¢1(2) X SU(2) X SUg(2) and the Ising model. The excitation
energies Ey.. are given in units of 277/ L, with L as the size of the
chiral fermion system. Bottom part: Finite-size spectrum at the two-
channel Kondo fixed point.

1 ) J 1 Efree
0 0 0 1 0
1/2 0 1/2 o 1/2
0 1/2 1/2 o 1/2
1/2 1/2 1 1 1
1/2 1/2 0 € 1
cy &) J I Escxkm
0 0 1/2 1 0
1/2 0 0 o 1/8
0 1/2 0 o 1/8
1/2 1/2 1/2 1 1/2
1/2 0 1 o 5/8
0 1/2 1 o 5/8
1/2 1/2 1/2 € 1
S=Ap+ -, (16)

where the ellipsis stands for all the less relevant operators

that are present in the expansion of S, and some high-
frequency portions which are not properly captured in the
expansion above. The weight A; can be determined from
matching the decay of the spin-spin correlation function at

TABLE III. Highest-weight operators and their dimensions x
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short and long times. This way we end up with A,~ I/V’FK.

We remark that there are infinitely many operators that
contain the scaling fields in their expansion. As an example,
consider the operators q‘);‘{ Here the label o={T, |} refers to
the spin components of a j=1/2 spinor, while 7==* refer to
the charge spins (or isospins) of a charge ¢=1/2 spinor. To
identify the corresponding operator on the Wilson chain, we
first note that fgylyg transforms as a spinor under spin rota-

tions. It can easily be seen that the operator ﬁ) | =ioyfo also
transforms as a spinor. We can then form a four-spinor out of
these operators, 7y, E{f&l’g,fal’a}. It is easy to show that vy,
transforms as a spinor under SU(2) rotations as well; thus
¢y could be identified as vy ={f] | ,-f5 1 o}- | i

However, we can construct another operator, F' { = fg!lS&,
and its counterpart, F I =io,F, and form a four-spinor out of
them: ' ={F i’o,—F J{’U}. This operator has the same quantum
numbers as ;. In fact, both operators’ expansions contain
o ,

The operator ¢} is of special interest since it is relevant
at the two-channel Kondo fixed point, just like the spin. Its
susceptibility therefore diverges logarithmically. Good can-

didates for these operators would be 2,/ €,, 'ylmyg,"’ since
these are spin singlet operators that behave as charge-1/2
spinors in both channels. The 7=7'=+ component of this
operator corresponds to the superconducting order parameter

- it
OSC = fO,l,Tf(),Z,J, _fO,l,ifO,Z,T’

while the +— components describe simply a local operator
that hybridizes the channels ~f | .f0. o
Another  candidate =~ would be  the
Zoor€s0'L17vs 7 . This operator is also a local singlet and
has charge spins (or isospins) ¢;=c,=1/2. It contains the

(17)

operator

2CK at the 2CK fixed point. Operators are

classified by the symmetry group SU¢;(2) X SU»(2) X SUg(2) and the scaling operators of the Ising model.
The constants ¢; and ¢, denote the charge spins (or isospins) in channels 1 and 2, respectively, while j refers
to the spin and [ labels the scaling operators of the Ising model: 1, o, €. Superscripts 7, 7" == refer to the two
components of charge spinors, while o=1,]| label the components of a spin—i% spinor.

cy c) J 1 x2CK Scaling operator Corresponding operators
0 0 1 1 1/2 b, S
1/2 0 1/2 o 1/2 b N=f51.0(0,f0.1)0)
Ty =[Fg1 5-~(i0,F0,1)o]
0 1/2 1/2 o 1/2 o »2
I
( fg,lga'i%fg,z —fg,1§5'f0,2 )
1/2 1/2 0 1 1/2 N S T
_fO,lo-ySO-O-nyJ —fo,llUySUfo,z
0 0 0 e 12 Punis S(F§.15f0.1=15.26f02)
0 0 0 1 32 T4, S(fy.15fo.1+f52610.2)
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following component of the composite superconducting or-
der parameter:

Oscc = fb,15Giafh . (18)

From their transformation properties, it is not obvious which
one of the above superconducting order parameters gives the
leading singularity. However, NRG gives a very solid answer
and tells us that, while the susceptibility of the traditional
operator does not diverge as the temperature or frequency
goes to zero, that of the composite order parameter does. It is

thus this latter operator that can be identified as ¢}’ . Note
that, in case of electron-hole symmetry, the composite hy-
bridization operator

Omifo(-g,l‘S-:&fO,Z (19)

has the same singular susceptibility as Ogcc since they are
both components of the same tensor operator. This is, how-
ever, not true any more away from electron-hole symmetry.
Furthermore, superconducting correlations are usually more
dangerous since in the Cooper channel any small attraction
would lead to ordering when a regular lattice model of two-
channel Kondo impurities is considered.

The knowledge of the operator content of the two-channel
Kondo fixed point enables us to describe the effects of small
magnetic fields and small channel anisotropies (J; # J,). For
energies and temperatures below Ty, the behavior of the
model can be described by the slightly perturbed two-
channel Kondo fixed-point Hamiltonian. For J,=J, and in a
small magnetic field, B<<Ty, this Hamiltonian can be ex-
pressed as

H=Hyex + D(l)/zKod’ams + D(IJ/ZEOJ% + Dal/z)\oj—l j’s + o
(20)

Here Hjc is the 2CK fixed-point Hamiltonian, and « is the
dimensionless coupling to the channel-anisotropy field ¢,

whereas the effective magnetic field &, couples to the “spin
field” ¢,. Both of them are relevant perturbations at the two-
channel Kondo fixed point and they must vanish to end up
with the two-channel Kondo fixed point at w,7—0. The
third coupling, A, couples to the leading irrelevant operator
(see Table III), which dominates the physics when k=h=0.
The energy cutoff D, in Eq. (20) is a somewhat arbitrary
scale: it can be thought of as the energy scale below which
the two-channel Kondo physics emerges, i.e., Dy~ Tk. Then
the dimensionless couplings g, A, and % are approximately

related to the couplings of the original Hamiltonian [Eq.
(11)] as>?

Ji—=J
~Kp=4-1—"2 21
o K (Jy+J,)? @
ho =~ BITx, (22)
No=0(1). (23)

However, the arbitrary scale D, in Eq. (20) can be changed at
the expense of changing the couplings, Dy— D, kq— k(D),
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hy— h(D), and \o— \(D), in such a way that the physics
below D, remains unchanged. This freedom translates to
scaling equations, whose leading terms follow from the con-
formal field theory results and read

d’;(xD) - %K(D) .o (24)
dh(D) _ 1

PR 2h(D) + , (25)
dN(D) 1
?:_E)\(D)-F‘“’ (26)

with x=—log D. Solving these equations with the initial con-
ditions D=Dy~ T and h=h,, k=k;, and A=\, we can read
out the energy scales at which the rescaled couplings become
on the order of 1,

(J,—J)*
T o Tyt ~ Ty, 27
kKo K(J1 + ) (27)
T, = Txh} ~ B/ Ty. (28)

At these scales the couplings of the relevant operators are so
large that they can no longer be treated as perturbations.
Below T™ the single-channel Kondo behavior is recovered in
the more strongly coupled channel, while 7), can be inter-
preted as the scale where the impurity-spin dynamics is fro-
zen by the external field.

The prefactors in Eq. (28) are somewhat arbitrary and
depend slightly on the precise definition one uses to extract
these scales. In this paper, we shall use the spectral function
of the composite fermion to define the scales Tk and 7. We
define T to be the energy at which for Kz=0 the spectral
function of the composite fermion takes half of its fixed-
point value (i.e., the value assumed at w=0), whereas T* is
the energy at which for K> 0 it takes 75% of its fixed-point
value (see Fig. 1).

It is much harder to relate 7}, to a physically measurable
quantity. We defined it simply through the relation

B2
T,=C,—, 29
i=Cip 29)
where the constant was chosen to be C;,=60. This way T},
corresponds roughly to the energy at which the NFL finite-
size spectrum crosses over to the low-frequency FL spec-
trum.

IV. NRG CALCULATIONS

Prior to discussing the analytic and numerical features of
the response functions, let us devote this section to the short
description of the NRG procedure used. All results presented
in this paper refer to zero temperature. The NRG calculations
were performed with a discretization parameter A=2. The

sum of the dimensionless couplings was J 1 +f2=0.4 for each
run. The NRG data were computed with a so-called flexible
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TABLE IV. Asymptotic behaviors of the universal crossover functions. At finite temperature, the bound-
ary of the two-channel Kondo scaling regime is set by the temperature. At zero temperature, the various
boundaries of the 2CK scaling regime derive from the competition between the leading irrelevant operator

and the relevant perturbation.

Asymptotic form

Scaling variable

Scaling function x<1 1<x X 2CK scaling regime
0,x) 1/4 1/4
_ ., _ w/T T=w
0 4(x) —0?+00f x? H}Ox”z
K7 (x) Ko+ KX Ktm+/<io’c 1/x|'? -
4 FOTTL Fen |1/ w/T* T'<w, T o NT* Ty
£ (0 Rl 7 T
By (%) Byt Blo® BB x| . Jpa—
_ ; ’ ’ ’: w/ Th T; =w, TZ s \ThTK
By.y(x) By o1 Bl
O4(x) ng 6 sgn(x)
_ _ w/T T=w
O5(x) Ox G5 sgn(x)|x|"?
0 o ol
Kg(x) KgX Kg sgn(x)+xg 1/x o/ T* =0, T;‘*OC(T'QTK)M
Rs(x) R sen(ol] 2 7 sen()
By.(x) B x B+ By /x| —
5 5z ST oI T, T < w, T T, T
By (%) Bs " Bs.

DM-NRG program,*’ which permits the use of an arbitrary
number of Abelian and non-Abelian symmetries (see Table
I), and incorporates the spectral-sum-conserving DM-NRG
algorithm.*® The DM-NRG method makes it possible to gen-
erate spectral functions that satisfy spectral-sum rules with
machine precision at 7=0 temperature. For calculations with
nonzero magnetic field, the use of the DM-NRG method rep-
resents a great advantage over conventional NRG methods,>
which lose spectral weights and violate spectral-sum rules.
Conventional methods also lead to smaller or bigger jumps
in the spectral functions at w=0 which hinder the computa-
tion of the universal scaling functions provided by the scale
T,.*> The DM-NRG method solves all these problems if a
sufficient number of multiplets are kept. On an ordinary
desktop computer, however, we need to use as many symme-
tries as possible to keep the computation time within reason-
able limits.

In the present paper, where we study the electron-hole
symmetrical case, it is possible to use the symmetry group
SU¢(2) XSU(2) X SU4(2) even in the case of channel an-
isotropy. At these calculations the maximum number of kept
multiplets was 750 in each iteration. This corresponds to the
diagonalization of =90 matrices with matrix sizes ranging
up to =600, acting on the vector space of =9000 multiplets
consisting of =106 000 states. In the presence of magnetic
field we used the symmetry group SU¢;(2) X SU(2)
X Ug(1), and retained a maximum of 1350 multiplets in each
iteration, which corresponds to the diagonalization of =150
matrices with matrix sizes ranging up to =800 acting on the
vector space of =18 000 multiplets consisting of ~73 000
states. In Secs. V-VIII, we shall see how the knowledge of
the operator content of the two-channel Kondo fixed point

can help us to understand the analytic structure of the various
dynamical correlation functions obtained by NRG.

V. LOCAL FERMIONS’ SPECTRAL FUNCTIONS AND
SUSCEPTIBILITIES

Let us first analyze the Green’s function of the local fer-
mion, fg,a,a‘_’ ¥,.. The composite fermion’s (FEVU’QHI:O’Q)
Green’s function was already looked into in detail in an ear-
lier study of Téth et al.*> We shall therefore not discuss its
analytic properties here but use it merely as a reference to
define the various energy scales in the NRG calculations (see
Fig. 1). Let us note, however, that in the large-bandwidth
limit, w, Tx << Dp, the spectral functions of the composite fer-
mion and that of the local fermion are simply related,

1

ofw) = 3= er(w).

2Dy (30)

Thus, apart from a trivial constant shift and a minus sign, the
spectral function of the local fermion is that of the composite
fermion, and all features of @ are also reflected in @.

Before we discuss the NRG results, let us examine what
predictions we have for the retarded Green’s function of the
operator fa(r’a from conformal field theory. By looking at its
quantum numbers, this operator can be identified with the
operator ¢,7 (see Table IV), i.e.,

fooa=Arbpat ", (31)

with the prefactor Ayoc1/ \JE. Note that A is a complex
number; it does not need to be real. The ellipsis in the equa-
tion above indicates the series of other less relevant operators
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and their descendants, which give subleading corrections to
the correlation function of f&ma. Furthermore, the expansion
above holds for the long-time behavior. The “short-time
part” of the correlation function of fg .« 18 DOt captured by
Eq. (31) and gives a constant to g,(w) on the order of
~1/Dp. Thus, apart from a prefactor Af, a constant shift, and
subleadmg terms, the Green’s function of f0 0. 18 that of the
field ¢ . As we discuss it shortly in the Appendix, the Fou-
rier transform of the Green’s function of any operator of
dimension x=1/2 is scale invariant around the two-channel
Kondo fixed point. Since ¢, and thus f&a,a have a scaling
dimension of 1/2 at the 2CK fixed point, it follows that the
dimensionless retarded Green’s function DFgf(w) is also
scale invariant,>*

DG {w,T) = gf<%,g,K(D),h(D),)\(D),...),

»
Dﬁ)f —0. (32)

From Eq. (32), we can deduce various important proper-
ties. Let us first consider the simplest case, 7=0 and xk=h
=0. Then setting the scale D to Dy~ Tk, we have

}chT () = gf<;)0 )\0,...). (33)

and use fixed-point scaling equa-

Let us now rescale D —
tion (26) to obtain \(D),

gr=¢8 (il, M>\o)- (34)
r=8s \ b,

Assuming that this function is analytic in its second argu-
ment, we obtain for |w| < T

e [ w ,|a)|
g}(,h,T O(w)=gf<T_K>zgif+gi—’f T—K+ cee (35)

with g. and gl_,f as some complex expansion coefficients.
Here the subscripts = refer to the cases >0 and w<0,
respectively. As we discussed above, the constants g. . de-
pend also on the short-time behavior of Qf(t) and are not
universal in this sense. These constants are not independent
of each other. They are related by the constraint that the
Green’s function must be analytic in the upper half plane.
Furthermore, electron-hole symmetry implies that g,,=g_;
and gifz_(gif)*'

Relations similar to the ones above hold for the dimen-
sionless spectral function. This is defined as

/() =~ ~Im g(0) (36)

and assumes the following simpler form at small frequencies
in case of electron-hole symmetry:

||

AT, k,h=0 ’
= e 37
O @) = ry i+ (37)
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T>0,Kp=0,B=0
| | |
(@ log (7] 0

log () los (1)

T>0,Kp=0B=0

(b)

FIG. 2. (Color online) (Top) Sketch of the dimensionless spec-
tral function 0;=DpQ; of f&l, ,» and (bottom) the real part of its
dimensionless Green’s function, Re §;=Dp Re G, for T>0 and
Kz=0 and B=0 as a function of log(w/T). Asymptotics indicated
for w<Tg were derived through scaling arguments. The large-w
behavior is a result of perturbation theory. The features of the spec-
tral functions at w~ Dy are nonuniversal and depend on the real-
ization of the model.

For w> T the scaling dimension of the local fermion is
governed by the free-fermion Hamiltonian, xjffeez 1/2, corre-
sponding to an w-independent spectral function. Perturbation
theory in J amounts to logarithmic corrections of the form
1/2—cst/1og*(Tx/ w), as we sketched in the upper parts of
Figs. 2 and 3.

For T#0 and xk=h=0 and using similar arguments as
before but now rescaling D— T, we find

T ® T )
/10 PN
O = TR = S
(@)= gf(T T ) gf(T Dy

(38)

Then by expanding g, we obtain the following scaling form
for the low-temperature behavior of the spectral function:

AhK— w) ®f< ) \/TIK@](<$)+, (39)

with O, and ®f as universal scaling functions. Note that we
made no assumption on the ratio w/7, but both w and 7" must
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- T=0,Kp>0B=0

~ (i + (‘Stx%)

—Re gy(w)

I'=0,Kp>0,B=0

tos ()
|

log (1“;\)

(b)

FIG. 3. (Color online) (Top) Sketch of the dimensionless spec-
tral function of fg,l,a’ 07=DpQy, and (bottom) the real part of its
dimensionless Green’s function, Re §,=DF Re Gy, for T=0, Kz>0,
and B=0 as a function of log(w/Tx). Asymptotics indicated for w
< Tx were derived through scaling arguments. The large-w behavior
is a result of perturbation theory. The features of the spectral func-
tions for w~ Dy are nonuniversal and depend on the realization of
the model.

be smaller than T. It is not difficult to show that ®,=1/4.
This follows from the observation that only the first term of
Eq. (39) survives the limit Tx— o0, which is equivalent to
taking the limit 7,w— 0. Then, however, we can use Eq.
(30) to relate the value of @/{w) to the T matrix, which is
essentially the second term in Eq. (30).%° However, as Borda
et al. discussed in Ref. 39, due to an exact theorem, the S
matrix vanishes at the 2CK fixed point, implying that the
value of the T matrix is fixed at the 2CK fixed point, and
correspondingly the second term in Eq. (30) scales to
(J2m/4)e(0)=1/4Dp, immediately yielding ©,=1/4.

The asymptotic properties of 0 ¢ can be extracted by mak-
ing use of the facts that: (i) g/{w,7) must be analytic for w
<T, (ii) that Eq. (39) should reproduce the T— 0 results in
the limit w> T, and (iii) that by electron-hole symmetry, 0,
must be an even function of w. The issuing asymptotic prop-
erties together with those of the other scaling functions de-
fined later are summarized in Table IV. The asymptotic prop-
erties of the real part Re ¢, can be extracted from those of 0,
by performing a Hilbert transform,

PHYSICAL REVIEW B 78, 165130 (2008)

Re §/(w) =P f 5210 (40)
w — (1)
with P as the principal part. The obtained features are
sketched in Fig. 2 for 7>0 and xk=h=0.
Let us now investigate the effect of channel anisotropy,
i.e., k#0 at T=0 temperature and no magnetic field 7=0. In
this case, we can rescale D to D=|w| to obtain

o= 2o N )+
K

with T* as the anisotropy scale defined earlier. The super-
scripts = refer to the cases of positive or negative anisotro-
pies: the superscript “+” is used when the coupling is larger
in the channel where we measure the Green’s function of

f0 «.o The asymptotics of the universal functions IC and IC
can be obtained through similar scaling arguments as before

and they differ only slightly from those of ®; and .f (see
Table IV for a summary). The properties of QTh %(w) are
summarized in Fig. 3. A remarkable feature of the spectral
function is that it contains a correction ~\T*/|w|. This cor-
rection can be obtained by doing perturbation theory in the
small parameter «(w) at the two-channel Kondo fixed point.

From the asymptotic forms in Table IV we find that in the
local fermion’s susceptibility a new scale, Tk ~ \T"TK, ap-
pears as a result of the competition between the leading ir-
relevant operator and the channel anisotropy.* It is only in
the regime T}‘*< w<T that the leading irrelevant operator
determines the dominant scaling behavior of the local fermi-
on’s susceptibility; i.e., we observe the true two-channel
Kondo physics. The expected properties of p; and the real
part of its dimensionless Green’s function g, in the presence
of channel asymmetry are summarized in Fig. 3. These ana-
lytic expectations are indeed met by our NRG results.

Figure 4(a) depicts the spectral function of fg’l’a for sev-
eral values of Ky as a function of w/Tk on a logarithmic
scale. The overall scaling is very similar to the one sketched
in Fig. 3 except that the high-temperature plateau is missing.
This is due to the relatively large value of Ty, which is only
1 decade smaller than the bandwidth cutoff. Figures
4(b)—4(e) are the numerical confirmations of the asymptotics
stated. In all these figures dashed straight lines are used to
demonstrate deviations from the expected behavior. In Fig.
4(b) we show the square-root-like asymptotics in the 2CK
scaling regime for the channel-symmetric case. This behav-
ior is a consequence of the dimension of the leading irrel-
evant operator as has just been discussed. In Fig. 4(c) the
same asymptotics are shown in the same region in case of a
finite channel anisotropy, whereas below them Fig. 4(d) dem-
onstrates (1/w)"?-like behavior resulting from the relevant
perturbation of the 2CK fixed-point Hamiltonian with chan-
nel anisotropy. In Fig. 4(e) the FL-like w? behavior is recov-
ered below T*, which is typical of fermionic operators in the
one-channel Kondo (1CK) scaling regimes.

In Figs. 5(a) and 5(b) we show the universal scaling
curves K= that connect the two-channel and single-channel
fixed points at low frequencies. They were computed from
runs with negative and positive values of Ky and are plotted
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FIG. 4. (Color online) (a) Dimensionless spectral function of fy | . @{w)=Dr@Hw), as a function of w/T for different values of Kp.
[(b)—(e)] Numerical confirmations of the low-frequency asymptotics derived through scaling arguments in Sec. V. Dashed straight lines are
for demonstrating deviations from the expected [(b) and (c)] Vw-like, (d) 1/Vw-like, and (¢) w?-like behaviors. T*/Tx=2.4 X 10~* in plots

(©)—(e).

as a function of w/T*. The universal behavior is violated for
values of Ky higher than the highest ones shown in Fig. 5,
where T* becomes comparable to Tk.

The real parts of the local fermion susceptibilities are
plotted in Fig. 6 for several values of K. They were obtained
by performing the Hilbert transformations numerically. They
should show a three-peak structure based on the analytic
considerations (see Fig. 3). There are two low-frequency
peaks clearly visible, associated with the crossovers at T* and
Tk. Furthermore there should be a nonuniversal peak at the
cutoff. For relatively large channel anisotropies, where T*
~ Tk, the former two peaks cannot be clearly separated in
Fig. 6. Also, due to the large value of Tx~ Dy, the peak at
w~ Tk and the smeared singularity at the bandwidth cutoff
w=D; merge to a single nonuniversal feature in our NRG
curves.

Let us now turn to the effect of a finite magnetic field,
B#0, for the case T=0 and Kz=0. As h and « scale the
same way in the 2CK scaling regime, the argument concern-

ing the k# 0 case can be repeated with minor modifications.
Now, however, the spin SUg(2) symmetry is violated. There-
fore the spectral functions of f&a’T and f(—‘)’a, | become differ-
ent, and they are no longer even either. Nevertheless, due to

particle-hole symmetry, they are still related through the re-
lations

f)f’T(a),T, K,h, .. ) = ﬁfsl(_ a),T, K,h, .. .),

ﬁf’T(O),T,K,h,...)=ﬁf’l((l),T,K,—h,...). (42)

We are thus free to choose the orientation of the magnetic
field downward. Then, after rescaling D — || we get

er=0 g (@) [lelz (o
Cro (U))_Bf,U(Th)"' TKBf,a'<Th)+"" (43)

where the label o refers to the different spin components and

By, and By, are yet another pair of universal crossover func-
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FIG. 5. (Color online) Universal collapse of the dimensionless
spectral functions 0y=Dy@; (with f in channel 1) to two scaling
curves K as a function of w/T* for (a) negative and (b) positive
values of K.

tions. The asymptotic properties of the functions B;, and

f)’ﬂo are summarized in Table IV.

Figure 7 shows the spectral functions 0, as a function of
/Ty on linear and logarithmic scales for different magnetic-
field values. The same curves are depicted as a function of
/Ty, in Fig. 8, which demonstrates the existence of the uni-
versal scaling curves By ,; i.e., that by using the scale, T}, the
local fermion’s spectral functions can be scaled on top of
each other for small enough magnetic fields. In this
magnetic-field region, we find a peak at 7}, for the spin-T
component of f7, while at the same place there is a dip for
the spin-| component. This is a remarkable feature that is
associated with inelastic scattering off the slightly polarized
impurity spin. In fact, the same universal features also appear
for the spectral functions of the composite fermions, which
we compute independently and which are directly related to

0.2 LI LI LI T
.\" //\:'\‘..'..' - KR
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_ AR 70y 0.0025 |
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FIG. 6. (Color online) Real part of the dimensionless Green’s
function, Re ;=D Re G, (with £ in channel 1), as a function of
/Ty for different values of K. From among the three peaks
sketched in Fig. 3 only the two peaks around 7™ and Tk are shown.

PHYSICAL REVIEW B 78, 165130 (2008)

T T T T T T
B/T, N 1
0.5F —. -1 _/,~' =1
[ 5610 A
- = 11x10
5.6x102
g F—— 11 x10:§
~ 5.6 %10
«To25F — 0 .
0 1
“40 20 0 20 40
@) w/TK
0.54 /‘/}\\.\ -
. :____._t—_-———— :::: B/TK L
3 J-immm T |
e | oo eTl D T T 56x10
a7 0257 -=11x10 " [
] 5.6x10 2
1 ——-11x10°?
%] ' ' 56x107° |
0.5 X -

T 11x10°

FIG. 7. (Color online) (Top) Dimensionless spectral function of
fo1.1» @1=Dp@yy, for different values of B as a function of w/T
on linear scale. (Bottom) Dimensionless spectral functions (a) of
fo.1.1 and (b) of f | for different values of B as a function of /Ty
on logarithmic scale.

those of the conduction electrons by Eq. (30).>3 The rescaled
spectral functions O ,(w) are shown in Fig. 9.

Although this numerical evidence can be obtained by con-
ventional NRG methods not using the density matrix, this is
no longer true for the sum of the local fermions’ spectral
function over the different spin components. In fact, for this
quantity, universal scaling curves in the presence of magnetic
field cannot be obtained using NRG because of the increase
in the size of the numerical errors at low frequencies and the
mismatch between the positive and negative frequency parts
of the spectral functions. The sum of the local fermion’s
spectral function over the two spin components is depicted in
Fig. 10 as a function of w/Tg. Here the splitting of the
Kondo resonance in the energy-dependent total scattering
cross section appears as a minimum at  ~ 7},. Unfortunately,
for even smaller magnetic fields the accuracy of our numeri-
cal data is insufficient to tell if the splitting of the Kondo
resonance survives in the limit B— 0, as conjectured in Ref.
45. In the data with B/Tx>1.1X107*, there seems to be
always a shallow minimum in the spectral function. We see
no indication for crossing of the curves as the magnitude of
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FIG. 8. (Color online) Universal collapse of the dimensionless

spectral functions @;y=DpQs; and O; =DpQs to two scaling
curves By, and By, for sufficiently small, nonzero values of B as a
function of w/Tj,

the field is reduced. If there is indeed no crossing of the
spectral functions and if the deviation from the \|w| behavior
indeed starts at w=T),~ B?/T, which is the only natural
assumption, then from exact Bethe-ansatz results it would
immediately follow that there must always be a splitting of
the Kondo resonance since =,[@/x(w=0,B)-0,(0=0,0)]
~BIn(Tx/B),” while 2,0/ (w=T},B)-0/,(w=0,0)]
~|B| would follow from the pure \|w| dependence of the
spectral function at B=0. However, these analytical argu-
ments do not constitute a real proof.

With small modifications, the analysis presented in this
section carries over to essentially any fermionic operator that
has quantum numbers c¢;=j=1/2 or c,=j=1/2 and has a
finite overlap with the primary fields ¢, and ¢, ,. Only the
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FIG. 9. (Color online) Universal collapse of the dimensionless
spectral functions of the composite fermion operator, O ;
=DpQpy and O | =Dp@F |, to two scaling curves By, and By, | for
sufficiently small, nonzero values of B as a function of w/Tj,
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FIG. 10. (Color online) Sum of the dimensionless spectral func-

tions @;1=DyQs; and O; =DpQy; for different values of B as a
function of w/Tk.

high-frequency behavior (w>T) and the normalization fac-
tors become different. Typically, a local operator with the
same charge and spin quantum numbers as ¢,, will have a
finite overlap with them. However, in some cases the internal
Ising quantum number of an operator may prevent an overlap
and, of course, one can also construct operators by, say, dif-
ferentiating with respect to the time, which would corre-
spond to descendant fields.

VI. SPIN SPECTRAL FUNCTIONS AND
SUSCEPTIBILITIES

In this section, we shall discuss the properties of the spin

operator 5‘, which is the most obvious example of a bosonic
operator of spin j=1 and charge quantum numbers c;=c,
=0 that overlaps with the scaling operator ¢,. There are,
however, many operators that have the same quantum num-
bers: two examples are the so-called channel spin operator,

Sc Efg,l&f(),l —ﬂg,z&fo,z, (44)
or a composite channel spin operator,
Scc = FS,I&fO,l —F8,25f0,2- (45)

Our discussion can be easily generalized to these operators
with minor modifications.

The analysis of the spin spectral function goes along the

lines of Sec. V. First we recall that the field (Z)S appears in the
expansion of the spin operator,

S=Ay+ o, (46)

with A~ 1/ v’T,(~ 1/ \s’FO. Therefore, the appropriate dimen-
sionless scale-invariant Green’s function is defined as

(o T
8s B,B,Ko,ho,... ETKGs((.U,T,K(), ...,Do). (47)

We remark that, apart from a minus sign, for bosonic corre-
lations the retarded Green’s function is identified as the dy-
namical susceptibility,
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FIG. 11. (Color online) (Top) Sketch of the dimensionless spec-

tral function of S, 9s=TxQs=Tx Im xs(w)/m, for T>0 and Kz=0
and B=0 as a function of log(w/Tk). (Bottom) Sketch of Qg
=Tx0s=Tg Im xs(w)/ 7 for T=0 and K # 0 and B=0 as a function
of log(w/Tg). Asymptotics indicated for w<Tyx were derived
through scaling arguments. The large-w behavior is a result of per-
turbation theory (Ref. 56).

(b) log (7,,)

X(0)=-G(w). (48)

We shall not repeat here all the steps of the derivation; we
only summarize the main results. In the absence of a mag-
netic field, =0, the spectral function of the spin operator is
odd. Furthermore, at 7=0 and for no anisotropy, x=0, the
spectral function has a jump at w=0,’

AT h, k=

o 'Tﬂ'+] (49)

() = sgn(w) {rs + 1§
K

This jump corresponds to a logarithmically divergent dy-
namical susceptibility, Re ys(w)=-Re G¢(w) *In(Tx/ w)/ Tk.

For w> Ty the impurity spin becomes asymptotically
free, decoupled from the conduction electrons. Therefore its
o dependence is set by its scaling dimension at the free-
fermion fixed point where x{°=0. It has the implication that
its correlation function decays as w™! corresponding to the
Curie-Weiss susceptibility with logarithmic corrections
present, known from Bethe-ansatz results and from perturba-

tion theory.
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FIG. 12. (Color online) Sketch of the real part of the dimension-

less Green’s function of S, Re 8s=—Tx Re xg(w) =Tk Re Gg(w), for
T,T°>0 as a function of log(w/Tk).

At finite temperatures 7 # 0 but for k=h=0, we obtain the
following scaling form for 7', w << T:

s T~
01 (e) = ®S<$) + \/T:K(QS(%) s (50)

The asymptotic properties of the scaling functions ®g and 0 s
are listed in Table IV.

In case of finite channel anisotropy but zero temperature,
we obtain for w<< Ty the scaling form

05" (w) = ics(%) + \/%ﬁs(%) +oe (5D

The asymptotic properties of g and 165 are only slightly

different from those of @ and O (see Table IV): below T*
the spectral function displays analytic behavior, while the
regime w>T" is governed by nonanalytical corrections as-
sociated with the 2CK fixed point. In this regime a feature
worth mentioning is the appearance of a correction, ~T"/ w
to Kg, or more precisely the lack of a \|T*/w| correction.
This is due to the fact that the anisotropy operator is odd,
while the spin operator is even with respect to swapping the
channel labels. Therefore there is no first-order correction to
the spin-spin correlation function in «, and the leading cor-
rections are only of second order, i.e., of the form 2/ w.

From the comparison of the terms in g and IES also follows
the existence of another crossover scale,

T, ~ (T"Ty)"", (52)

that separates the regimes governed by the leading relevant
and leading irrelevant operators. Here we used the subscript
s to indicate that this scale 7" is different from the scale 7}
introduced in relation to the local fermion’s spectral function.
The asymptotic properties of Q¢ xg(w) for T>0, Kz=0
and T=0, Ky#0 are sketched in the upper and lower parts
of Fig. 11, while the behavior of the real part is presented in
Fig. 12.

The expectations above are indeed nicely born out by the
NRG calculations. Figure 13 shows the impurity-spin spec-
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FIG. 13. (Color online) (a) Dimensionless spectral function of S, 0=Tx0s=Tx Im xg(w)/, as a function of w/ Tk for different values
of Kg. (b) Minute log(w) dependence at the lowest frequencies diminishing as a function of the number of kept multiplets. [(c)—(e)]
Numerical confirmations of the low-frequency asymptotics derived from scaling arguments in Sec. VI. Straight dashed lines are for
demonstrating deviations from the expected (c) Vw-like, (d) w-like, and (¢) 1/w-like behaviors. 7%/ Tx=7 X 1072 in plots (d) and (e).

tral functions as a function of w/ T for various K and their
asymptotic properties. First, in Fig. 13(b) we show a very
small logarithmic w dependence that we observed below T
at the 2CK fixed point. The amplitude of this log(w) depen-
dence was reduced as we increased the number of multiplets.
It appears that this behavior is not derived from the lognor-
mal smoothing of the NRG data, and it may be due to some
approximations used in the spectral-sum-conserving DM-
NRG procedure. In Fig. 13(c) we show the square-root-like
behavior around the 2CK Kondo fixed point which is attrib-
uted to the leading irrelevant operator, while in Fig. 13(d) we
show that first-order corrections coming from the scaling of
the channel anisotropy are indeed absent just as we stated
above, and only second-order terms appear, resulting in a
1/ w-like behavior. Finally, Fig. 13(e) demonstrates the linear
o dependence, which is characteristic of most bosonic opera-
tors in the proximity of an FL fixed point. All these findings
support very nicely the analytical properties summarized in
Table IV.

The spin spectral functions also collapse to a universal
scaling curve describing the crossover from the two-channel
Kondo to the single channel-Kondo fixed points, when they
are plotted against w/T**. This universal data collapse is
demonstrated in Fig. 14, where the impurity-spin spectral
functions are plotted for various Ky values. The data collapse
works up to somewhat higher anisotropy values than for the
local fermions’ spectral functions as indicated by the Kj de-
pendence of the scales 7, and T}

The real part of the spin susceptibility was obtained
through numerical Hilbert transformation, and is shown in
Fig. 15 as a function of w/ Ty for various values of K. These
curves meet the expected behavior sketched in Fig. 12: they
display a logarithmic increase at high frequencies and satu-
rate at values that correspond to Re yg~In(Tx/T")/Tk.

Let us finally discuss the case 7=«=0 but 2 # 0. Then the
components of S are distinguished by the magnetic field: the
spectral function of S° has almost the same features as for
finite channel anisotropies. Since S° is a Hermitian operator,

165130-14



DYNAMICAL CORRELATIONS IN THE SPIN-HALF TWO-...

N\ .\ .‘\
0.12} oL _
\ vy
\ Vo
\ \ ’
\ \ “_
3 008 . \ v 7]
o . K,=005 - \ [
<Q K= 0.02 . \ Vo
5 L KH: 0.0075 \.\ \‘ ,'\ |
0.04 —.— K,=00025 . Vool ]
. K. = 0.001 B \ A
" \ \ \
S \ \. N
N \\
0 S —rrr—— S
10° 10° 10°
o/T*

FIG. 14. (Color online) Universal collapse of the dimensionless

spectral function of §, 05=TxQs, to the scaling curve Kg as a func-
tion of w/T* for sufficiently small, nonzero values of Kj.

its spectral function remains odd and acquires the following
corrections in the different scaling regimes:

AT <w>
QS,Z_BS,Z(Th) TKBS& Th + > (53)

with the scaling functions By, and Es,z having the
asymptotic properties listed in Table IV. Note that in this
case the first-order correction coming from the magnetic
field does not vanish and leads to the appearance of a cross-
over scale ~\7),Tx.

The perpendicular components of the impurity spin have
somewhat different properties. First of all, the operators S~
are not Hermitian, and therefore their spectral functions are
not symmetrical. The spectral functions of the operators S*
and §” are, however, symmetrical, and their Green’s func-
tions (and susceptibilities) are related through

10 10" 10 10
m/TK

FIG. 15. (Color online) Real part of the dimensionless Green’s

function (susceptibility) of S, Re 8s=—Tx Re xs(w), as a function of
w/ Ty for different values of K.
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=TxQs., for different values of B as functions of w/Tk.

1
Gs=Gg= Z(gs_ +35"). (54)

The corresponding dimensionless spectral functions @%
and éf as computed by our DM-NRG calculations are
shown in Fig. 16 as a function of w/Ty, while the universal
scaling with w/T}, is confirmed for low frequencies in Fig.
17. This scaling also turned out to be valid for values of B
higher than the ones for fermions (see Fig. 17). The scaling
functions By, and Bg + behave very similarly. This is some-
what surprising since the naive expectation would be to have
a resonance in By, just as in the local fermion’s spectral
function, that would correspond to a spin-flip excitation at
the renormalized spin splitting, 77,.

However, quite remarkably, a resonance seems to appear
in xs.(w)/w at a frequency w~ T}, while we find no reso-
nance in XS+(w)/ . This can be seen in Fig. 18, where

Kg(w)/w is plotted for the different spin components as a
function of w/Ty for various magnetic-field values. This
seems to indicate that the spin coherently oscillates between
the spin-up and spin-down components, while its x and y
components simply relax to their equilibrium value.

VII. SUPERCONDUCTING CORRELATIONS

In this section, let us investigate the local superconducting
correlation functions. These deserve special attention since
many heavy-fermion compounds display exotic supercon-
ducting phases that may possibly be induced by local two-
channel Kondo physics.” The most obvious candidates for
the corresponding local operators have been identified in
Sec. III and are the local channel-asymmetric superconduct-

ing operator, Ogc= f&mf&zq e f(T),l, ifS,Z,T’ and the composite
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fermion superconductor field, Ogcc= f&lS&ia)f&z.
For the composite superconductor we find the expansion,
Oscc=Ascchr + -, (55)

where the expansion coefficient Agcc can be estimated from
the high-frequency behavior of the correlation function up to
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logarithmic prefactors as Agcc~ \s“TPK/ Dp. While for the im-
purity spin, one can exclude logarithmic corrections to the
expansion coefficient Ag in Eq. (46) based on the exact
Bethe-ansatz results, this is not possible for the supercon-
ducting correlation function. In fact, we know that in the
expansion of the composite fermion itself the correct prefac-
tor is Ap~J/\NTx~ 1/[\Tx In(Dy/Tg)].>* Therefore, similar
logarithmic factors could appear in the prefactor Agcc. Nev-
ertheless, in the following, we shall disregard possible loga-
rithmic corrections and define the normalized dimension-
less and scale-invariant correlation function through the re-
lation

2 P
8scclw) = T_ngcc(CU) =- T_FXSCC(w)- (56)
K K

Apart from its overall amplitude and its high-frequency be-
havior, in the low-frequency scaling regimes the spectral
function of the composite superconductor operator behaves
the same way as that of S (see Table IV). Therefore we
merely state its asymptotics without further explanation.

In the absence of anisotropy and magnetic field, k=h=0,
for w<Tg the spectral function becomes a universal func-
tion, pscc(w/T), whose behavior is described by the scaling

form
Al 1) ~ 13)
04 (w) = ®SCC<;> +\ T_K®scc<;> + 0, (57)

while in the presence of anisotropy but at 7=0 temperature
and for 2=0, the spectral functions behave as

AT e ® [|w| ~ ®
0 (w) = Kscc(?) + T_KICSCC(F) + 0. (58)

Finally, in a finite magnetic field but for k=0 anisotropy
and T=0 temperature, the spectral function assumes the fol-
lowing scaling form:

A k=T= w |w| ~ w
Ofce’ = Bscc(ﬁ) + T_KBSCC<Fh) +0 (59)

The properties of the various scaling functions defined above
are identical to those of the corresponding spectral functions
of the S$* given in Table IV. Therefore they have not been
included in Table IV again.

The asymptotic properties are nicely confirmed by our
NRG calculations. The dependence on the anisotropy, to-
gether with the ~\e’|$, the ~1/w, and the ~w scaling re-
gimes, is plotted in Fig. 19. Here the high-frequency region,
w>Tg, is also displayed, where the spectral function is
roughly linear in the frequency, as dictated by the free-
fermion fixed point.

The universal collapse of the low-frequency part of the
curves in terms of w/T" is shown in Fig. 20. The crossover
curve ICSCC(%) is very similar to the spin crossover function
Ky and displays a plateau at large frequencies from which it
deviates as 1/ until it finally reaches the linear frequency
regime below T™.

Figure 21 displays the real part of the dimensionless
Green’s function, which is essentially the real part of the
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superconducting susceptibility. This diverges logarithmically
for T°=0, but for finite 7" it saturates, corresponding to a

susceptibility value of
Ty, (u)
—In{ — .
p:\T*

Notice that there is a small prefactor in front of the loga-
rithm. This small prefactor arises because composite super-
conducting correlations are irrelevant at energies w> Ty, as
it follows from simple power counting.

Application of a magnetic field has effects very similar to
the anisotropy, as shown in the upper part of Fig. 22. We kept
a relatively small number of multiplets. Therefore the small
logarithmic increase at small frequencies is more visible in
Fig. 22. As mentioned before, this increase is most likely an
artifact of the spectral-sum-conserving approximation of Ref.

Re xscc ~

46 and it is due to the way this method redistributes spectral
weights. This is based on the observation that the slope of the
logarithm gets smaller if we increase the number of multi-
plets kept. These curves also collapse to a single universal
curve as a function of w/Tj, as shown in the lower part of
Fig. 22.

Finally, in Fig. 23, we show the numerically obtained
spectral function and the corresponding dimensionless sus-
ceptibility of the noncomposite superconductor, Ogc
=fo 100 ~fo1.S00- Clearly, this spectral function dis-
plays no plateau below Ty, but it exhibits a linear in w be-
havior below T. Correspondingly, the susceptibility Re xs¢
remains finite for ®— 0 even in the absence of anisotropy
and an external magnetic field, i.e., at the 2CK fixed point.

This implies that, although its charge and spin quantum
numbers would allow it, the expansion of this operator does

not contain the scaling operator ¢" . This may be due to the
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FIG. 20. (Color online) Universal collapse of Qg to the scaling
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difference in the Ising quantum numbers, which we did not
identify. Thus the dimension of the highest-weight scaling
operator that appears in the expansion of Ogc is x=1 and not
1/2, as one would naively expect based on a simple compari-
son of quantum numbers. Turning on a small anisotropy or
magnetic field does not influence substantially the spectral
properties of the corresponding Green’s function, either.

VIII. ELECTRON-HOLE SYMMETRY BREAKING

In Secs. II-VII we restricted our considerations to the
case of an electron-hole symmetrical conduction band. How-
ever, in most experimental systems electron-hole (e-h) sym-
metry is broken. The non-Fermi-liquid state itself is robust
against such e-h symmetry breaking.”*? However, a new, ex-
actly marginal operator identified as “potential scattering”
emerges in the absence of e-h symmetry. At the level of the
finite-size spectrum, this operator appears through the emer-
gence of a phase shift, §, and the universal crossover func-
tions described in Sec. VII shall also depend on this phase
shift. Although §'itself is a nonuniversal function of the den-
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sity of states and various couplings, the crossover functions
discussed above are expected to be universal in terms of 6.

A thorough study of the universal crossover functions in
the presence of e-h symmetry is definitely beyond the scope
of our paper. However, let us shortly investigate here how
the properties of the 2CK state itself are influenced by e-h
symmetry breaking. To break the e-h symmetry, we simply
added a potential-scattering term,

V2 fd oS00 (60)
ap

to the NRG Hamiltonian in Eq. (11). Since the charge SU(2)
symmetries are also broken by Eq. (60), we used the sym-
metry group U (1) X Ugy(1) X SUg(2) and retained a maxi-
mum of 2000 multiplets in each iteration in our NRG calcu-
lations.

As the operator in Eq. (60) is marginal at the 2CK fixed
point, apart from changing their amplitude, it is not expected
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(b) the real part of its dimensionless Green’s function, Re gsc=Dy Re Ggc.

to influence the most singular parts of the spectral functions
for w— 0.7*° From our simple scaling arguments it follows,
however, that the amplitudes of the singular parts for @>0
and w<<0 can be different in this case. The numerical results
for the composite fermion’s and local fermion’s spectral
functions indeed reinforce these expectations.

The upper part of Fig. 24 shows the universal scaling of
the composite fermion’s spectral function Qp(w) versus
w/ Ty for different values of the potential-scattering strength

V and the exchange coupling J with J=J,=J,. In these fig-
ures we defined Ty by the half-width of the function ¢ ()

for each value of the J .V _parameter pair.57 Our results
clearly exhibit the expected Vw/ Ty scaling for low frequen-
cies, as demonstrated in the insets of Fig. 24. The singular
part of the composite fermions’ low-frequency spectral func-
tion remains almost perfectly symmetrical even in the pres-
ence of e-h symmetry breaking, which shows up mostly as a
shift of the high-frequency spectral weight.

The situation is somewhat different for the local fermions.
There we also find a reassuring \w/ Tk behavior as shown in
the inset of the lower part of Fig. 24. However, here the
singular part is strongly masked by a large linear contribu-
tion, and it is also rather asymmetrical. Notice that for a
strongly e-h asymmetrical conduction band it is not true that
the dip in @{w) is just a mirror reflection of the peak in
0 r(w) since the unperturbed (J=0 and V# 0) Green’s func-
tion of f; has also a rather large real part. This is why for low
frequencies the above e-h symmetry violation makes the lo-
cal fermions’ spectral function much more asymmetric than
that of the composite fermions. We find that 0,(0)=0.25 for
all V considered in our calculations, which is in accordance
with the result of Affleck and Ludwig* for the zero-
temperature, zero-frequency self-energy at the 2CK fixed
point: In the presence of a local potential scattering in an
otherwise electron-hole symmetrical band, it can be shown
that, apart from possible non-universal contributions ne-
glected in the conformal field theoretical approach, the den-
sity of states at the Fermi energy is reduced by a factor of 1/2
compared to its value for /=0, as a consequence of the van-
ishing of the single particle S-matrix*. In our calculations,
within numerical accuracy, we have not found a deviation
from this value of 1/2, at least not for the values of the

potential scattering considered here, and the expected non-
universal contributions (associated with a potential scattering
comparable to the band-width) remained apparently negli-
gible. It is, on the other hand, easy to see that this reduction
factor should become different from 1/2 if the electron-hole
symmetry is broken in the band itself and not at the impurity

site, in which case the real part of the unperturbed (V= J=0)
local Green’s function is finite at the Fermi energy. In this
regard our way of electron-hole symmetry breaking may be
somewhat peculiar.

IX. CONCLUSIONS

In the present paper we gave a detailed discussion of the
spectral properties of the two-channel Kondo model. We ana-
lyzed the properties of the correlation functions of various
local operators in the presence of a channel anisotropy and
an external magnetic field. In particular, we studied numeri-
cally and analytically the correlation functions of the local

fermions f, ,=f.4.,» the components of the impurity spin S,
the local superconductivity operator Og-= f}iayf;, and the

composite superconductor operator fJ{Sc?icrvf; The selection
of these operators was partially motivated by conformal field
theory, which tells us the quantum numbers and scaling di-
mensions of the various scaling operators at the two-channel
Kondo fixed point.30 There are, however, many operators
that have quantum numbers identical with the scaling fields.
Here we picked operators with the right quantum numbers
and at the same time with the largest possible scaling dimen-
sion at the free-fermion fixed point, where J;,J, — 0. These
are the operators whose spectral functions are expected to
have the largest spectral weight at small temperatures
(among those having the same quantum numbers), and which
are therefore the primary candidates for an order parameter,
when a lattice of 2CK impurities is formed, as is the case in
some uranium- and cerium-based compounds. The operators
above are, of course, also of physical interest on their own.
The spectral function of f&aﬁ is related to the tunneling
spectrum into the conduction-electron sea at the impurity

site, the Green’s function of § is just the dynamical spin
susceptibility that can be measured under inelastic neutron
scattering, and finally the local superconducting operators
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FIG. 24. (Color online) Universal scalings of the dimensionless (top) composite fermion’s and (bottom) local fermion’s spectral functions

as a function of w/ Ty for different values of the exchange coupling J and potential-scattering strength V. The insets show Jw-like behavior

for low frequencies for both operators.

are candidates for superconducting ordering in heavy-
fermion materials. We remark that in the electron-hole sym-
metrical case, the other components of the operator multiplet
that contains the composite superconducting order parameter
Ogcc would correspond to a composite channel-mixing
charge-density ordering. Of course, the susceptibilities of
this operator has the same properties as that of ygcc(w).

In addition to these operators, there are two more opera-
tors of possible interest: the so-called composite fermion’s
Green’s function is related to the 7 matrix, 7(w) that de-
scribes the scattering properties off a two-channel impurity
(or the conductance through it in case of a quantum dot), and
was already studied in detail in Ref. 45. A further candidate
is the channel-anisotropy operator. This has also a logarith-
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mically divergent susceptibility, and would also be associ-
ated with a composite orbital ordering in case of a two-
channel Kondo lattice system. However, the spectral
properties of this latter operator are so similar to those of the
composite superconductor that we have decided not to show
data about them.

For the numerical calculations we used a flexible DM-
NRG method, where we exploited the hidden charge SU(2)
symmetries® as well as the invariance under spin rotations to
obtain high-precision data. To identify the scaling operators
in this case, we reconstructed the boundary conformal field
theory of Affleck and co-workers®® for this symmetry classi-
fication. We then established the scaling properties of the
various dynamical correlation functions and identified the
corresponding universal crossover functions and their
asymptotic properties, based on simple but robust scaling
arguments. In this way, universal scaling functions describ-
ing the crossover from the two-channel Kondo fixed point to
the single-channel Kondo fixed point (for J; #J,) and to the
magnetically polarized fixed point (for B+ 0) were intro-
duced, which we then determined numerically. We empha-
size again that presently these universal crossover functions
can only be determined through the application of DM-NRG,
and in fact, for the scaling curves in the presence of a mag-
netic field the application of the DM-NRG method was ab-
solutely necessary.

Our numerical calculations confirmed all our analytical
expectations, and they confirmed that actually in the pres-
ence of an applied magnetic field or channel anisotropy, the
two-channel Kondo scaling regime is rather restricted, and it
may also depend on the physical quantity considered. In Fig.
25 we sketched the regimes where the pure two-channel
Kondo behavior can be observed. Notice that in the presence
of anisotropy the two-channel Kondo scaling regime of the
spin susceptibility has a boundary that differs from the
boundary of the two-channel Kondo scaling regime of the T
matrix.

Some of the spectral functions show rather remarkable
features. In a magnetic field, e.g., the spectral function of the
composite fermion FL , shows a universal peak at a fre-
quency w=T). This peak corresponds to spin-flip excitations
of the impurity spin at the renormalized magnetic field. Re-
markably, this peak is accompanied by a dip of the same size
at the same frequency for spin-down electrons. This dip is
actually very surprising and is much harder to explain. Simi-
lar features appear but with opposite sign in the local fermi-
ons’ spectral functions. Even more surprisingly, this sharp
resonant feature is completely absent in the spectral function
of the spin operators S*. At the same time, we observe a
resonance in Im xg (w)/w at T, which could hint of the
coherent but damped oscillation of the spin. However, very
surprisingly, these features are completely absent in
Im xs - (w)/ w, where only a smooth crossover is found. It is
thus hard to interpret the scale T} simply as “the renormal-
ized value of the magnetic field.”

We also studied how the two-channel Kondo behavior is
influenced by electron-hole symmetry breaking. We found
that, while the singular part of the composite fermion’s spec-
tral function remains almost perfectly symmetrical, the sin-
gular part of the local fermion’s spectral function has a
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FIG. 25. (Color online) (Top) Sketch of the various 2CK scaling
regimes in the presence of channel anisotropy for the local fermions
bounded by 7} from below and for the spin bounded by 77" The
crossover scale 7°* is also indicated. (Bottom) Sketch of the 2CK
scaling regime for the susceptibilities of the highest-weight fields
bounded by T}", and the crossover scale T,

strong asymmetry. We argued that in the presence of
electron-hole symmetry breaking the universal crossover
functions discussed here should depend on an additional uni-
versal phase shift parameter, corresponding to potential scat-
tering. However, the detailed analysis of this family of cross-
over functions is beyond the scope of our work.

One of the interesting results of our numerical analysis
was that only the composite superconductor Ogcc has a loga-
rithmically divergent susceptibility. This is thus the primary
candidate for superconducting ordering for a 2CK lattice sys-
tem. We remark here that while for a single impurity the
superconducting susceptibility seems to have a rather small
amplitude, Re xsc~ T/ D7 In(Tg/T), in a lattice model the
mass of the carriers is also renormalized. Therefore the band-
width is expected to get renormalized as Dp— Ty.” As a
result, the corresponding susceptibility can be rather large
and drive, in principle, a superconducting instability. Inter-
estingly, although the results are still somewhat
controversial,*® in the two-channel Kondo lattice these local
superconducting correlations do not seem to induce a super-
conducting transition.”® This may be, however, an artifact of
the standard two-channel Kondo lattice model, which does
not account properly for the orbital and band structure of an
f-electron material.*® We believe, that in a more realistic lat-
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tice of two-channel Kondo impurities a composite supercon-
ducting order may develop, similar to the one suggested in
Ref. 49. However, DMFT+DM-NRG calculations would be
needed to confirm this belief.
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APPENDIX: SCALING PROPERTIES OF TWO-POINT
FUNCTIONS

In this appendix, we discuss the scaling properties of vari-
ous scaling functions. Essentially, we use the generalized
Callan-Symanzik equations. For the sake of simplicity, let us
first focus on the retarded Green’s function of the z compo-
nent of the operator ¢,

G, H) = = i{[$5(1), (0) )3 01),

and its Fourier transform G(w, T). Let us investigate the scal-
ing properties of this function in the absence of magnetic
field. From the fact that ¢, is the field conjugate to the ex-
ternal “magnetic field” & and that the partition function (gen-
erating function) must be scale invariant under the renormal-

(A1)

PHYSICAL REVIEW B 78, 165130 (2008)

ization group, we easily get the following differential
equation:

9G aG
Do+ % Bﬂ%uu +(2B,-1)G =0, (A2)

with u,, as a shorthand notation for the dimensionless cou-
plings {u,}={x,\,...} that occur in H, and S, are the corre-
sponding B functions,

dnu

——=B,{ub,

T (A3)

with x=—In(D) as the scaling variable. In the vicinity of the
two-channel Kondo fixed point the B functions just assume
their fixed-point value, which are just the renormalization-
group eigenvalues, y,=d—x,,, with the dimension d=1, since
all operators are local and live in time only. Since for ¢, we
have y,=1/2, in the close vicinity of the two-channel Kondo
fixed point we obtain

ag
—=0. (A4)
dD
One can also easily show that
dg dg
—=—w. (A5)
dD dw

These relations imply that G(w, T, D) is scale invariant and is
only a function of w/D and T/D. Clearly, similar equations
hold for the correlation functions of all operators with di-
mension of 1/2. Furthermore, the above scaling property can
easily be modified for operators with dimensions y, # 1/2.

'For a recent review see P. A. Lee Rep. Prog. Phys. 71(1),
012501 (2008).

2E. W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orgad, in The
Physics of Conventional and Unconventional Superconductors,
edited by K. H. Bennemann and J. B. Ketterson (Springer-
Verlag, Berlin, 2004), Vol. 1I.

3H. von Lohneysen, A. Rosch, M. Vojta, and P. Wolfle, Rev. Mod.
Phys. 79, 1015 (2007).

4P. Coleman, Handbook of Magnetism and Advanced Magnetic
Materials (Wiley, New York, 2007).

SN. Grewe and F. Steglich, in Handbook on the Physics and
Chemistry of Rare Earths, edited by J. K. A. Gschneidner and L.
Eyring (North-Holland, Amsterdam, 1991), Vol. 14, p. 343; G.
R. Stewart, Rev. Mod. Phys. 73, 797 (2001).

5D. L. Cox and M. B. Maple, Phys. Today 48(2), 32 (1995).

TFor a review, see D. L. Cox and A. Zawadowski, Adv. Phys. 47,
599 (1998).

8Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature (London)
413, 804 (2001).

M. Vojta, Philos. Mag. 86, 1807 (2006).

10M. Vojta, Rep. Prog. Phys. 66, 2069 (2003).

IS, Tomonaga, Prog. Theor. Phys. 5, 544 (1950).

12J. M. Luttinger, J. Math. Phys. (Cambridge, Mass.) 4, 1154

(1963).

13M. Bockrath, D. H. Cobden, A. G. Rinzler, R. E. Smalley, L.
Balents, and P. L. McEuen, Nature (London) 397, 598 (1999).

4H. Ishii, et al., Nature (London) 426, 540 (2003).

ISP, M. Singer, P. Wzietek, H. Alloul, F. Simon, and H. Kuzmany,
Phys. Rev. Lett. 95, 236403 (2005).

168, Déra, M. Guldcsi, F. Simon, and H. Kuzmany, Phys. Rev.
Lett. 99, 166402 (2007).

I7E. Miranda and V. Dobrosavljevic, Rep. Prog. Phys. 68, 2337
(2005).

18\, Milovanovié, S. Sachdev, and R. N. Bhatt, Phys. Rev. Lett.
63, 82 (1989).

19V, Dobrosavljevi¢, T. R. Kirkpatrick, and G. Kotliar, Phys. Rev.
Lett. 69, 1113 (1992).

20Ph. Nozieres and A. Blandin, J. Phys. (Paris) 41, 193 (1980).

21'S. Katayama, S. Maekawa, and H. Fukuyama, J. Phys. Soc. Jpn.
50, 694 (1987).

22]. von Delft, A. W. W. Ludwig, and Ambegaokar, Ann. Phys.
(N.Y.) 263, 1 (1998).

2T, Cichorek, A. Sanchez, P. Gegenwart, F. Weickert, A. Woja-
kowski, Z. Henkie, G. Auffermann, S. Paschen, R. Kniep, and F.
Steglich, Phys. Rev. Lett. 94, 236603 (2005).

24Y. Oreg and D. Goldhaber-Gordon, Phys. Rev. Lett. 90, 136602

165130-22



DYNAMICAL CORRELATIONS IN THE SPIN-HALF TWO-...

(2003).

ZR. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and D.
Goldhaber-Gordon, Nature (London) 446, 167 (2007).

26For further theoretical studies see, e.g., Refs. 45, 55, and 59.

27Ph. Nozieres, J. Low Temp. Phys. 17, 31 (1974).

28N. Andrei and C. Destri, Phys. Rev. Lett. 52, 364 (1984).

P A. M. Tsvelick and P. B. Wiegmann, J. Stat. Phys. 38, 125
(1985).

301, Affleck and A. W. W. Ludwig, Nucl. Phys. B 352, 849 (1991);
360, 641 (1991); 1. Affleck, A. W. W. Ludwig, H. B. Pang, and
D. L. Cox, Phys. Rev. B 45, 7918 (1992).

3IK. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

32H. B. Pang and D. L. Cox, Phys. Rev. B 44, 9454 (1991).

3S. Yotsuhashi and H. Maebashi, J. Phys. Soc. Jpn. 71, 1705
(2002).

3K. Vladar, A. Zawadowski, and G. T. Zimdnyi, Phys. Rev. B 37,
2001 (1988); 37, 2015 (1988).

35V. J. Emery and S. Kivelson, Phys. Rev. B 46, 10812 (1992).

367 Gan, N. Andrei, and P. Coleman, Phys. Rev. Lett. 70, 686
(1993).

37G. Zarand and K. Vladar, Phys. Rev. Lett. 76, 2133 (1996).

3D, L. Cox and A. E. Ruckenstein, Phys. Rev. Lett. 71, 1613
(1993).

39L. Borda, L. Fritz, N. Andrei, and G. Zardnd, Phys. Rev. B 75,
235112 (2007).

401, Affleck and A. W. W. Ludwig, Phys. Rev. B 48, 7297 (1993).

41J. Kroha, P. Wolfle, and T. A. Costi, Phys. Rev. Lett. 79, 261
(1997).

42 A. M. Sengupta and A. Georges, Phys. Rev. B 49, 10020 (1994).

43S. Suzuki, O. Sakai, and Y. Shimizu, Solid State Commun. 104,
429 (1997).

4#F. B. Anders, Phys. Rev. B 71, 121101(R) (2005).

“A. L. Téth, L. Borda, J. von Delft, and G. Zardnd, Phys. Rev. B

PHYSICAL REVIEW B 78, 165130 (2008)

76, 155318 (2007).

46W. Hofstetter, Phys. Rev. Lett. 85, 1508 (2000); R. Peters, T.
Pruschke, and F. B. Anders, Phys. Rev. B 74, 245114 (2006); A.
Weichselbaum and J. von Delft, Phys. Rev. Lett. 99, 076402
(2007).

Y7A. I Té6th, C. P. Moca, O. Legeza, and G. Zarind,
arXiv:0802.4332 (unpublished).

4M. Jarrell, H. Pang, D. L. Cox, and K. H. Luk, Phys. Rev. Lett.
77, 1612 (1996).

4N. Andrei, P. Coleman, H. Y. Kee, and A. M. Tsvelik, J. Phys.:
Condens. Matter 10, L239 (1998); P. Coleman, A. M. Tsvelik,
N. Andrei, and H. Y. Kee, Phys. Rev. B 60, 3608 (1999).

S0B. A. Jones, C. M. Varma, and J. W. Wilkins, Phys. Rev. Lett.
61, 125 (1988).

3! Throughout the paper we use units of i=kg=vp=1.

28ee, e.g., Ref. 55 for the details of the derivation of these scales
where the perturbative renormalization-group approach breaks
down.

3T. A. Costi, Phys. Rev. Lett. 85, 1504 (2000).

>4 Throughout this paper we discuss only retarded Green’s func-
tions. The other Green’s functions are related to them by simple
analytic relations in equilibrium.

55M. Pustilnik, L. Borda, L. I. Glazman, and J. von Delft, Phys.
Rev. B 69, 115316 (2004).

S6M. Garst, P. Wolfle, L. Borda, J. von Delft, and L. Glazman,
Phys. Rev. B 72, 205125 (2005).

37 The half-width is defined by taking the average of the frequen-
cies w+, where 0p(w) drops to half of the value 0(0) for posi-
tive and negative frequencies.

33E. B. Anders, M. Jarrell, and D. L. Cox, Phys. Rev. Lett. 78,
2000 (1997).

F. B. Anders, E. Lebanon, and A. Schiller, Phys. Rev. B 70,
201306(R) (2004).

165130-23



